Post-translational activation introduces a free radical into pyruvate formate-lyase.

نویسندگان

  • J Knappe
  • F A Neugebauer
  • H P Blaschkowski
  • M Gänzler
چکیده

Pyruvate formate-lyase (formate acetyltransferase; EC 2.3.1.54) of Escherichia coli cells is post-translationally interconverted between inactive and active forms. Conversion of the inactive to the active form is catalyzed by an Fe2+-dependent activating enzyme and requires adenosylmethionine and dihydroflavodoxin. This process is shown here to introduce a paramagnetic moiety into the structure of pyruvate formate-lyase. It displays an EPR signal at g = 2 with a doublet splitting of 1.5 mT and could comprise an organic free radical located on an amino acid residue of the polypeptide chain. Hypophosphite was discovered as a specific reagent that destroys both the enzyme radical and the enzyme activity; it becomes covalently bound to the protein. The enzymatic generation of the radical, which is linked to adenosylmethionine cleavage into 5'-deoxyadenosine and methionine, possibly occurs through an Fe-adenosyl complex. These results suggest a radical mechanism for the catalytic cycle of pyruvate formate-lyase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme.

Pyruvate formate-lyase activating enzyme generates a stable and catalytically essential glycyl radical on G(734) of pyruvate formate-lyase via the direct, stereospecific abstraction of a hydrogen atom from pyruvate formate-lyase. The activase performs this remarkable feat by using an iron-sulfur cluster and S-adenosylmethionine (AdoMet), thus placing it among the AdoMet radical superfamily of e...

متن کامل

Conversion of 3Fe-4S to 4Fe-4S Clusters in Native Pyruvate Formate-Lyase Activating Enzyme: Mössbauer Characterization and Implications for Mechanism

Pyruvate formate-lyase activating enzyme utilizes an iron-sulfur cluster and S-adenosylmethionine to generate the catalytically essential glycyl radical on pyruvate formate-lyase. Variable-temperature (4.2200 K) and variable-field (0.05-8 T) Mössbauer spectroscopy has been used to characterize the iron-sulfur clusters present in anaerobically isolated pyruvate formate-lyase activating enzyme an...

متن کامل

Structure and mechanism of the glycyl radical enzyme pyruvate formate-lyase[6]

The enzyme pyruvate formate-lyase (PFL) catalyzes the reversible conversion of pyruvate and CoA into acetyl-CoA and formate, which has a central role in anaerobic glucose fermentation by E. coli cells and other bacteria [1]. PFL a 2 × 85 kDa homodimer is the first example of a radical enzyme where the spin was found to be located on the polypeptide backbone Cα-atom of a glycyl residue (Gly 734)...

متن کامل

Pyruvate formate-lyase mechanism involving the protein-based glycyl radical.

Pyruvate formate-lyase (also called formate acetyltransferase; EC 2.3.1.54; PFI .) catalyses the thiolytic cleavage of pyruvate by CoA, yielding acetyl-CoA and formate. This reaction is the key step in the glucose-fermentation route in Escherichziz coli and various other bacteria. Operationally, it resembles the (B-keto)thiolase reaction of the fatty-acid degradation cycle. The mechanism of pyr...

متن کامل

The free radical in pyruvate formate-lyase is located on glycine-734.

Pyruvate formate-lyase (acetyl-CoA:formate C-acetyltransferase, EC 2.3.1.54) from anaerobic Escherichia coli cells converts pyruvate to acetyl-CoA and formate by a unique homolytic mechanism that involves a free radical harbored in the protein structure. By EPR spectroscopy of selectively 13C-labeled enzyme, the radical (g = 2.0037) has been assigned to carbon-2 of a glycine residue. Estimated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 81 5  شماره 

صفحات  -

تاریخ انتشار 1984