Post-translational activation introduces a free radical into pyruvate formate-lyase.
نویسندگان
چکیده
Pyruvate formate-lyase (formate acetyltransferase; EC 2.3.1.54) of Escherichia coli cells is post-translationally interconverted between inactive and active forms. Conversion of the inactive to the active form is catalyzed by an Fe2+-dependent activating enzyme and requires adenosylmethionine and dihydroflavodoxin. This process is shown here to introduce a paramagnetic moiety into the structure of pyruvate formate-lyase. It displays an EPR signal at g = 2 with a doublet splitting of 1.5 mT and could comprise an organic free radical located on an amino acid residue of the polypeptide chain. Hypophosphite was discovered as a specific reagent that destroys both the enzyme radical and the enzyme activity; it becomes covalently bound to the protein. The enzymatic generation of the radical, which is linked to adenosylmethionine cleavage into 5'-deoxyadenosine and methionine, possibly occurs through an Fe-adenosyl complex. These results suggest a radical mechanism for the catalytic cycle of pyruvate formate-lyase.
منابع مشابه
Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme.
Pyruvate formate-lyase activating enzyme generates a stable and catalytically essential glycyl radical on G(734) of pyruvate formate-lyase via the direct, stereospecific abstraction of a hydrogen atom from pyruvate formate-lyase. The activase performs this remarkable feat by using an iron-sulfur cluster and S-adenosylmethionine (AdoMet), thus placing it among the AdoMet radical superfamily of e...
متن کاملConversion of 3Fe-4S to 4Fe-4S Clusters in Native Pyruvate Formate-Lyase Activating Enzyme: Mössbauer Characterization and Implications for Mechanism
Pyruvate formate-lyase activating enzyme utilizes an iron-sulfur cluster and S-adenosylmethionine to generate the catalytically essential glycyl radical on pyruvate formate-lyase. Variable-temperature (4.2200 K) and variable-field (0.05-8 T) Mössbauer spectroscopy has been used to characterize the iron-sulfur clusters present in anaerobically isolated pyruvate formate-lyase activating enzyme an...
متن کاملStructure and mechanism of the glycyl radical enzyme pyruvate formate-lyase[6]
The enzyme pyruvate formate-lyase (PFL) catalyzes the reversible conversion of pyruvate and CoA into acetyl-CoA and formate, which has a central role in anaerobic glucose fermentation by E. coli cells and other bacteria [1]. PFL a 2 × 85 kDa homodimer is the first example of a radical enzyme where the spin was found to be located on the polypeptide backbone Cα-atom of a glycyl residue (Gly 734)...
متن کاملPyruvate formate-lyase mechanism involving the protein-based glycyl radical.
Pyruvate formate-lyase (also called formate acetyltransferase; EC 2.3.1.54; PFI .) catalyses the thiolytic cleavage of pyruvate by CoA, yielding acetyl-CoA and formate. This reaction is the key step in the glucose-fermentation route in Escherichziz coli and various other bacteria. Operationally, it resembles the (B-keto)thiolase reaction of the fatty-acid degradation cycle. The mechanism of pyr...
متن کاملThe free radical in pyruvate formate-lyase is located on glycine-734.
Pyruvate formate-lyase (acetyl-CoA:formate C-acetyltransferase, EC 2.3.1.54) from anaerobic Escherichia coli cells converts pyruvate to acetyl-CoA and formate by a unique homolytic mechanism that involves a free radical harbored in the protein structure. By EPR spectroscopy of selectively 13C-labeled enzyme, the radical (g = 2.0037) has been assigned to carbon-2 of a glycine residue. Estimated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 81 5 شماره
صفحات -
تاریخ انتشار 1984